PARIS POIDEROT

UFR DE MATHÉMATIQUES

MASTER 2° année MATHÉMATIQUES FONDAMENTALES 2016 – 2017

Géométrie Non Commutative I et II (9+9 ECTS) Andrzej Zuk

I er semestre

Présentation

Le but de la géométrie non commutative est d'utiliser des outils de la géométrie différentielle pour l'étude de certaines algèbres non commutatives, qui apparaissent naturellement à la fois en mathématique et en physique. Nous étudierons particulièrement l'espace non commutatif dual d'un groupe non abélien. On commencera par les bases de la théorie des algèbres d'opérateurs. On présentera les notions et théorèmes de base dues à von Neumann, Gelfand ainsi que d'autres mathématiciens. On exposera les développements tout récents en relations avec le progrès remarquable en ce qui concerne la théorie de groupes.

Programme

Partie de base I:

Théorie spectrale:

- o Algèbres de Banach, spectre, transformée de Gelfand.
- o C* algèbres commutatives, opérateurs auto-adjoints sur un espace de Hilbert.

C* algèbres:

- o Construction GNS.
- o C*-algèbre d'un groupe discret.
- O Moyennabilité et nucléarité. Simplicité, exactitude.

Partie avancée II:

Algèbres de von Neumann :

- O Topologie faible, théorème du bicommutant, décomposition polaire.
- O Algèbre de von Neumann d'un groupe discret.
- o Facteurs de type II I, dimension continue.
- Classification.

Théorie de groupes :

- o La propriété (T).
- o La conjecture de Baum-Connes.
- o La conjecture de Dixmier.

Connaissances requises

Une connaissance d'analyse fonctionnelle est utile

Bibliographie

- [1] A. Connes: Noncommutative Geometry, disponible sur http://www.alainconnes.org/docs/book94bigpdf.pdf
- [2] V.F.R. Jones: Von Neumann algebras, Notes de cours, disponible sur http://www.math.berkeley.edu/~vfr/VonNeumann.pdf

Des références bibliographiques ponctuelles seront en outre données pendant le cours.