3.5 Solutions

Exercice 3.1.

- 1. Soit s>0 tel que f(s)=0. Par récurrence sur $n\in\mathbb{N}$, on a $f(ns)\leqslant nf(s)$, donc f(ns)=0. Comme f est croissante, f = 0.
- 2. Pour $x, y, z \in X$, on a $f(d(x, y)) = 0 \iff d(x, y) = 0 \iff x = y$; f(d(x, y)) = f(d(y, x)); enfin

$$f(d(x,z)) \leqslant f(d(x,y) + d(y,z))$$
 puisque f est croissante $\leqslant f(d(x,y)) + f(d(y,z))$

- 3. Ces applications sont toutes croissantes
 - Supposons que f(0) = 0 et f(s) = 1 pour s > 0. On a $0 = f(0+0) \le f(0) + f(0) = 0$. Si s et t ne sont pas tous deux nuls, on a $f(s) + f(t) \ge 1 = f(s+t)$.
 - Soit $u \in [0,1]$ tel que s=(s+t)u. On a alors t=(s+t)(1-u). Pour $\alpha \in [0,1[$, on a $u \leq u^{\alpha}$ et $(1-u) \leq (1-u)^{\alpha}$, donc $(s+t)^{\alpha} = (u+(1-u))(s+t)^{\alpha} \leq (u^{\alpha}+(1-u)^{\alpha})(s+t)^{\alpha} = s^{\alpha}+t^{\alpha}$.
 - Supposons que $f(s) = \min(s, 1)$. Si $s, t \in [0, 1]$, on a bien $\min(s + t, 1)$. Si l'un des deux est
 - > 1, alors $1 = \min(s + t, 1) \leqslant \min(s, 1) + \min(t, 1)$. Pour $s, t \in \mathbb{R}_+$, on a $\frac{s}{s + t + 1} \leqslant \frac{s}{s + 1}$ et $\frac{t}{s + t + 1} \leqslant \frac{t}{t + 1}$, donc $\frac{s + t}{s + t + 1} \leqslant \frac{s}{s + 1} + \frac{t}{t + 1}$.
- 4. Fixons s et posons h(t) = g(t) + g(s) g(s+t). L'application h est continue sur \mathbb{R}_+ , dérivable sur \mathbb{R}_+^* et $h'(t) = g'(t) - g'(t+s) \leq 0$. Comme h(0) = 0, on a $h(t) \leq 0$ pour tout $t \in \mathbb{R}_+$.

Exercice 3.2.

- 1. Posons $b = \sup F$. Pour tout $n \in \mathbb{N}$, $b 2^{-n}$ ne majore pas F (puisque b est le plus petits des majorants de F). Il existe donc $x_n \in F$ avec $b-2^{-n} < x_n$. Comme $x_n \in F$ et b majore F, il vient $b-2^{-n} < x_n \le b$. On en déduit que la suite (x_n) converge vers b et, puisque F est fermé, il vient $b \in F$.
- 2. Remarquons que a et b vérifient ces propriétés, puisque $[a,x] \cap F = \emptyset$ et $a \in F$ ou $a = -\infty$, on a $a = \sup F \cap]-\infty, x]$ (rappelons que $\sup \emptyset = -\infty$). De même $b = \inf F \cap [x, +\infty[$.

Posons $a = \sup F \cap]-\infty, x]$. Puisque $F \cap]-\infty, x]$ est majoré (par x) et fermé, il vient $a = -\infty$ (si $F \cap]-\infty, x] = \emptyset$), ou $a \in F \cap]-\infty, x]$ (par la question 1.). En particulier, puisque $x \notin F$, il vient a < x.

De même, posons $b = \inf F \cap [x, +\infty[$. On a encore $b \in F$ ou $b = +\infty$ et b > x.

Pour $y \in [a, b[$, on a $y \notin F \cap]-\infty, x[$, puisque y > a et $a = \sup F \cap]-\infty, x[$; de même $y \notin F \cap [x, +\infty[$ puisque $y < b = \inf F \cap [x, +\infty[$. Donc $y \notin F$.

- 3. Si $F = \emptyset$, on posera g(x) = 0 pour tout $x \in \mathbb{R}$.
 - Supposons donc $F \neq \emptyset$. Soit $x \in \mathbb{R} \setminus F$, et soient a, b définis comme dans la question 2. Si x majore F, on a $b=+\infty$. On posera g(x)=f(a); remarquons qu'alors $a=\sup F$. De même, si x minore F, on posera $g(x) = f(\inf F)$. Enfin, si x ne majore ni ne minore F, on pose $a = \sup F \cap]-\infty, x]$ et $b = \inf F \cap [x, +\infty[$. On considérons alors l'application affine $\ell : \mathbb{R} \to E$ telle que $\ell(a) = f(a)$ et $\ell(b) = f(b)$. On pose $g(x) = \ell(x)$; autrement dit $g(x) = \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b)$. Remarquons que si I est un intervalle tel que I soit non vide et contenu dans $\mathbb{R} \setminus F$, les éléments $a = \sup F \cap]-\infty, x$ et $b = \inf F \cap [x, +\infty[$, ne dépendent pas de $x \in I$ de sorte que la fonction g définie ci-dessus est
- 4. Remarquons que toute fonction affine $t \mapsto t\xi + \eta$ est lipschitzienne (de rapport $N(\xi)$ donc continue sur \mathbb{R} .

Si $x \notin F$, la fonction g affine au voisinage de x est continue en x.

Si $x \in F$, distinguons deux cas :

bien affine sur I.

• ou bien il existe $\alpha > 0$ tel que $|x - \alpha, x| \subset \mathbb{R} \setminus F$, dans ce cas g est affine sur $[x - \alpha, x]$ donc est continue à gauche en x;

• sinon, soit $\varepsilon > 0$; il existe $\alpha > 0$ tel que pour $y \in F$, tel que $|y-x| < \alpha$ on ait $N(f(x)) - f(y) < \varepsilon$; dans $|x - \alpha, x[\cap F$ il existe un élément x'. Pour tout $y \in [x', x]$, g(y) est dans l'enveloppe convexe de $\{f(z); z \in [x', x] \cap F\}$ elle-même contenue dans la boule ouverte de centre f(x) et de rayon ε . Cela prouve que dans ce cas aussi g est continue à gauche en x.

On démontre de même que q est continue à droite en x.

Exercice 3.3. On peut supposer que $X \neq U$, sinon il n'y a rien à démontrer.

L'application $f: x \mapsto d(x, X \setminus U)$ est continue (elle est lipschitzienne de rapport 1). Comme $X \setminus U$ est fermé, on a $f(x) = 0 \iff x \in X \setminus U$ (en général, on $d(x, A) = 0 \iff x \in \overline{A}$). La fonction f atteint son minimum en un point a du compact K. Posons r = f(a). Comme $a \in U$, on a donc r > 0.

Soit $x \in X$; si $x \in X \setminus U$ alors pour tout $y \in K$, on a $d(x,y) \ge d(y,X \setminus U) \ge f(a) = r$, donc $d(x,K) \ge r$. Par contraposée, $d(x,K) < r \Rightarrow x \in U$.

Exercice 3.4.

- 1. A + B est l'image par l'application continue $(x, y) \mapsto x + y$ du compact $A \times B$.
- 2. Soit $z \in \overline{A + B}$. Il existe une suite (z_n) dans A + B qui converge vers z. Par définition, il existe $x_n \in A$ et $y_n \in B$ tels que $z_n = x_n + y_n$. Comme A est compacte, il existe une application strictement croissante $\varphi : \mathbb{N} \to \mathbb{N}$ telle que la suite $(x_{\varphi(n)})$ converge vers un point $a \in A$. La suite $(z_{\varphi(n)})$, extraite de la suite (z_n) converge vers z. Il s'ensuit que la suite $(z_{\varphi(n)} x_{\varphi(n)})$, c'est-à-dire la suite $(y_{\varphi(n)})$ converge vers $z a \in E$. Comme B est fermé, il vient $z a \in B$, donc $z \in A + B$. NB. Les ensembles $A = \{n + 2^{-n}; n \in \mathbb{N}^*\}$ et \mathbb{Z} sont fermés dans \mathbb{R} . Pour tout $n \in \mathbb{N}^*$, on a $2^{-n} \in A + \mathbb{Z}$ et $0 \notin A + \mathbb{Z}$, donc $A + \mathbb{Z}$ n'est pas fermé.

Exercice 3.5. Notez que cela résulte de l'exercice 3.3...

L'ensemble $C = X \times X \setminus U$ est fermé dans $X \times X$; il est compact. S'il n'est pas vide, la fonction continue $(x,y) \mapsto d(x,y)$ y atteint sa borne inférieure r. Pour tout $(x,y) \in C$, on a $x \neq y$, donc $d(x,y) \neq 0$. Il vient r > 0. Pour $(x,y) \in X \times X$, on a $(x,y) \in C \Rightarrow d(x,y) \geqslant r$; donc $d(x,y) < r \Rightarrow (x,y) \in U$.

Exercice 3.6. Soit (x_n) une suite de points de X convergeant vers un point $x \in X$. Nous devons démontrer que la suite $(f(x_n))$ converge vers f(x). Pour cela, puisque Y est compact, il suffit de démontrer que toute suite extraite convergente de la suite $(f(x_n))$ converge vers f(x). Soit donc $\varphi : \mathbb{N} \to \mathbb{N}$ une application strictement croissante, telle que la suite $(f(x_{\varphi(n)}))$ converge vers un point y de Y. Alors la suite $(x_{\varphi(n)}, f(x_{\varphi(n)}))$ converge vers (x, y). Comme G est fermé, il vient $(x, y) \in G$ donc y = f(x).

NB. Ce résultat ne se généralise pas au cas où Y n'est pas supposé compact. Par exemple, le graphe de l'application $f: \mathbb{R} \to \mathbb{R}$ donnée par f(0) = 0 et f(x) = 1/x pour $x \neq 0$ est fermé : c'est l'ensemble $\{(x,y) \in \mathbb{R}^2; \ xy = 1\} \cup \{(0,0)\}.$

Exercice 3.7.

1. Pour tout $x \in X$, l'application $y \mapsto d(x,y)$ est 1-lipschitzienne (d'après l'inégalité triangulaire). Il s'ensuit que la suite $(d(x,x_n))_{n\in\mathbb{N}}$ est de Cauchy dans \mathbb{R} , donc convergente. L'application g est limite de la suite de fonctions 1-lipschitziennes $x \mapsto d(x,x_n)$: elle est 1-lipschitzienne (en effet pour tout $(x,y) \in X^2$, on a $|g(x) - g(y)| = \lim |d(x,x_n) - d(y,x_n)| \leq d(x,y)$), donc continue (4). Puisque la suite (x_n) n'est pas convergente, la fonction g ne s'annule pas. (En effet $g(y) = 0 \iff d(y,x_n) \to 0 \iff (x_n) \to y$). La fonction 1/g est donc bien définie et continue. Puisque la suite (x_n) est de Cauchy, on a $\lim g(x_n) = 0$ (en effet $g(x_n) \leq \sup\{d(x_p,x_q); p,q \geqslant n\}$ et ce sup tend vers 0), donc $g(x_n)^{-1} \to \infty$: la fonction 1/g n'est pas bornée.

^{4.} On peut aussi démontrer que la suite de fonctions $x \mapsto d(x, x_n)$ converge uniformément vers g.

- 2. Notons U_n la boule ouverte de centre x_n et de rayon r/2 et $V = \{x \in X; \inf d(x, x_n) > r/3\}$. La fonction $x \mapsto \inf d(x, x_n) = d(x, \{x_n, n \in \mathbb{N}\})$ est 1-lipschitzienne donc continue. Ces parties forment donc un recouvrement ouvert de X. Il suffit de démontrer que f est continue sur chacun de ces ouverts. Sur V, la fonction f est nulle, donc elle y est continue. Sur U_n , on a $f(x) = \max \left(0, n\left(\frac{r}{3} d(x_n, x)\right)\right)$; elle y est continue. Puisque $f(x_n) = \frac{nr}{3}$, la fonction f n'est pas bornée.
- 3. L'image d'un compact par une application continue est compacte donc fermée, d'où (i) \Rightarrow (ii). Si $f: X \to \mathbb{R}$ est une application continue non bornée, la fonction $g: x \mapsto \frac{1}{1+f(x)^2}$ est continue, ne s'annule pas, mais $0 \in \overline{g(X)}$, donc (ii) \Rightarrow (iii).

On peut construire une application continue et non bornée de X dans \mathbb{R} si X n'est pas complet - par (a), ou s'il n'est pas précompact par (b). D'où (iii) \Rightarrow (i).

Exercice 3.8. Pour $y \in Y$, posons $g(y) = \sup\{f(x, y); x \in X\}$.

Pour tout $y \in Y$, l'application continue $x \mapsto f(x,y)$ atteint son maximum sur le compact X: il existe un point $x \in X$ tel que f(x,y) = g(y).

Soit (y_n) une suite de points de Y convergeant vers un point $y \in Y$. Soient $x \in X$ et (x_n) une suite de points de X tels que f(x,y) = g(y) et $f(x_n,y_n) = g(y_n)$.

Soit $\varepsilon > 0$. Puisque f est continue, on a $\lim f(x, y_n) = f(x, y)$; donc il existe n_0 , tel que pour $n \ge n_0$, on ait $g(y_n) \ge f(x, y_n) > f(x, y) - \varepsilon = g(y) - \varepsilon$.

Supposons que l'ensemble $Z = \{n \in \mathbb{N}; \ g(y_n) \geqslant g(y) + \varepsilon\}$ ne soit pas majoré. De la suite $(x_n)_{n \in \mathbb{Z}}$ dans le compact X, on peut extraire une suite convergente. Il existe donc une application strictement croissante $\varphi : \mathbb{N} \to Z$ telle que la suite $(x_{\varphi(n)})$ soit convergente vers un point $z \in X$. On a alors $g(y) \geqslant f(z,y) = \lim f(x_{\varphi(n)},y_{\varphi(n)})$. Or pour tout $n \in \mathbb{N}$, on a $f(x_{\varphi(n)},y_{\varphi(n)}) \geqslant g(x) + \varepsilon$, et on arrive à une contradiction.

L'ensemble Z étant majoré, il existe n_1 que l'on peut supposer $\geq n_0$ qui le majore. Pour $n > n_1$, on a $g(y) + \varepsilon > g(y_n) > g(y) - \varepsilon$. On en déduit que $g(y_n)$ tend vers g(y), donc g est continue.

Exercice 3.9. Si Y est discret, toute partie de Y est fermée, donc toute application à valeurs dans Y est fermée!

Supposons que X soit compact et soit F une partie fermée de $X \times Y$. Soit y_n une suite de points de p(F) (où $p: X \times Y \to Y$ est la projection) qui converge vers un point $y \in Y$. On doit démontrer que $y \in p(F)$. Puisque $y_n \in p(F)$, il existe $x_n \in X$ tel que $(x_n, y_n) \in F$. Comme X est compact, il existe une application strictement croissante $\varphi: \mathbb{N} \to \mathbb{N}$ telle que la suite $(x_{\varphi(n)})$ soit convergente vers un point $x \in X$. Alors la suite $(x_{\varphi(n)}, y_{\varphi(n)})$ converge vers (x, y); puisque F est fermé, il vient $(x, y) \in F$, donc $y \in p(F)$.

Si X n'est pas compact et Y n'est pas discret, il existe

- une suite (x_n) de points de X dont aucune suite extraite ne converge;
- une suite (y_n) de points de Y convergeant vers un point $y \in Y$ telle que, pour tout n, on ait $y_n \neq y$. Posons $F = \{(x_n, y_n); n \in \mathbb{N}\}$. Si F n'était pas fermée, il existerait une suite (z_k) de points de F convergeant vers un point z qui n'est pas dans F; alors il existerait une application $\varphi : \mathbb{N} \to \mathbb{N}$ telle que $z_k = (x_{\varphi(k)}, y_{\varphi(k)})$; comme la limite de la suite z_k n'étant pas un point de cette suite, chaque valeur de la suite serait prise au plus un nombre fini de fois, donc on aurait $\lim \varphi(k) = +\infty$. Quitte à extraire une sous-suite, on pourrait alors supposer que φ est strictement croissante. Or la suite $(x_{\varphi(k)})$ ne peut pas converger par hypothèse. Il en résulte que F est fermé

Or $p(F) = \{(y_n); n \in \mathbb{N}\}$ qui n'est pas fermé puisque $y \notin p(F)$, donc p n'est pas fermée.