Cutting squares into equal-area triangles

Jim Fowler

A talk for $\sqrt{\pi}$

into equal-area triangles?

into 2 equal-area triangles?

into 2 equal-area triangles? Yes.

into 4 equal-area triangles?

into 4 equal-area triangles? Yes.

into 6 equal-area triangles?

into 6 equal-area triangles? Yes.

into **3** equal-area triangles?

into **5** equal-area triangles?

into an odd number of equal-area triangles?

Question Can a square be divided into an odd number of triangles each having the same area?

This question could have been asked two thousand years ago!

How do we split a square sandwich among 5 friends?

Question Can a square be divided into an odd number of triangles each having the same area?

Question

Can a square be divided into an odd number of triangles each having the same area?

Answer No. It cannot be done.

Question

Can a square be divided into an odd number of triangles each having the same area?

Answer No. It cannot be done.

Why not...?

The Proof

Two ingredients:

Sperner's Lemma 2-adic valuation.

The Proof

Two ingredients:

Sperner's Lemma ^{and a} 2-adic valuation.

$$a \equiv b \pmod{2}$$

means *a* and *b* are **both even** or **both odd**,

$$a \equiv b \pmod{2}$$

means a and b are **both even** or **both odd**, means a - b is divisible by two.

$$a \equiv b \pmod{2}$$

means a and b are **both even** or **both odd**, means a - b is divisible by two.

"*a* is congruent to *b*, modulo two."

$$a \equiv b \pmod{2}$$

means a and b are **both even** or **both odd**, means a - b is divisible by two.

"*a* is congruent to *b*, modulo two."

 $1 \equiv 3 \pmod{2}$,

$$a \equiv b \pmod{2}$$

means a and b are **both even** or **both odd**, means a - b is divisible by two.

"*a* is congruent to *b*, modulo two."

 $1 \equiv 3 \pmod{2}$, but $2 \not\equiv 5 \pmod{2}$.

$$a \equiv b \pmod{2}$$

means a and b are **both even** or **both odd**, means a - b is divisible by two.

"*a* is congruent to *b*, modulo two."

 $1 \equiv 3 \pmod{2}$, but $2 \not\equiv 5 \pmod{2}$. $0 \equiv 16 \pmod{2}$,

$$a \equiv b \pmod{2}$$

means a and b are **both even** or **both odd**, means a - b is divisible by two.

"*a* is congruent to *b*, modulo two."

Triangulate.

Triangulate. Color vertices A, B, or C.

Triangulate. Color vertices A, B, or C.

It doesn't matter how we color the vertices.

It doesn't matter how we color the vertices.

 $\frac{\mathbf{AB} \text{ edges}}{\text{on perimeter}} \equiv \frac{\mathbf{ABC}}{\text{triangles}} \pmod{2}$

$\frac{\textbf{AB} \text{ edges}}{\text{on perimeter}} \equiv \frac{\textbf{ABC}}{\text{triangles}} \pmod{2}$

On the inside of the square, on each side of **AB** edges, place a pebble.

On the inside of the square, on each side of **AB** edges, place a pebble.

Count the pebbles

On the inside of the square, on each side of **AB** edges, place a pebble.

Count the pebbles—in two different ways.

Each **ABC** triangle gives one pebble.

Each **ABC** triangle gives one pebble.

Each **ABC** triangle gives one pebble. Other triangles give zero or two pebbles.

Each **ABC** triangle gives one pebble. Other triangles give zero or two pebbles.

Each **ABC** triangle gives one pebble. Other triangles give zero or two pebbles.

pebbles $\equiv \frac{ABC}{triangles} \pmod{2}$

Each **AB** edge on the perimeter gives one pebble.

Each **AB** edge on the perimeter gives one pebble.

Each **AB** edge on the perimeter gives one pebble. Other edges give zero or two pebbles.

Each **AB** edge on the perimeter gives one pebble. Other edges give zero or two pebbles.

Each **AB** edge on the perimeter gives one pebble. Other edges give zero or two pebbles.

pebbles $\equiv \frac{AB}{on \text{ perimeter}} \pmod{2}$

 $\frac{\textbf{ABC}}{\text{triangles}} \equiv \text{pebbles} \pmod{2}$

 $\frac{\textbf{ABC}}{\text{triangles}} \equiv \text{pebbles (mod 2) and}$

AB edges on perimeter \equiv pebbles (mod 2)

 $\frac{\textbf{ABC}}{\text{triangles}} \equiv \text{pebbles} \pmod{2} \text{ and}$

AB edges on perimeter \equiv pebbles (mod 2) so

 $\frac{\textbf{AB} \text{ edges}}{\text{on perimeter}} \equiv \frac{\textbf{ABC}}{\text{triangles}} \pmod{2}.$

Sperner's Lemma

No matter how you triangulate, or how you color the vertices,

the number of perimeter **AB** edges, and the number of **ABC** triangles

are both odd or both even.

Applying Sperner's Lemma

An odd number of perimeter **AB** edges \Rightarrow An odd number of **ABC** triangles.

Applying Sperner's Lemma

An odd number of perimeter **AB** edges \Rightarrow An odd number of **ABC** triangles.

An odd number of perimeter **AB** edges \Rightarrow there exists an **ABC** triangle!

The Proof

Two ingredients:

Sperner's Lemma 2-adic valuation.

The Proof

Two ingredients:

Sperner's Lemma 2-adic valuation.

2-adic valuation

In addition to Sperner's lemma, we need a **2-adic valuation**.

2-adic valuation

In addition to Sperner's lemma, we need a **2-adic valuation**.

Before talking about *2-adic* valuations, let's talk about valuations.

Absolute value is an example of a valuation.

A valuation measures how big a number is.

- A valuation measures how big a number is.
- A valuation is a function $|\cdot|:\mathbb{R}\to\mathbb{R}$
 - $|x| \ge 0$ for all $x \in \mathbb{R}$.

- A valuation measures how big a number is.
- A valuation is a function $|\cdot|:\mathbb{R}\to\mathbb{R}$
 - $|x| \ge 0$ for all $x \in \mathbb{R}$.
 - |x| = 0 if and only if x = 0.

- A valuation measures how big a number is.
- A valuation is a function $|\cdot|:\mathbb{R}\to\mathbb{R}$
 - $|x| \ge 0$ for all $x \in \mathbb{R}$.
 - |x| = 0 if and only if x = 0.
 - $\blacktriangleright |x \cdot y| = |x| \cdot |y|.$

- A valuation measures how big a number is.
- A valuation is a function $|\cdot|:\mathbb{R}\to\mathbb{R}$
 - $|x| \ge 0$ for all $x \in \mathbb{R}$.
 - |x| = 0 if and only if x = 0.
 - $\blacktriangleright |x \cdot y| = |x| \cdot |y|.$
 - $\bullet |x+y| \le |x|+|y|.$

Valuations

Absolute value is an example of a valuation.

- A valuation measures how big a number is.
- A valuation is a function $|\cdot|:\mathbb{R}\to\mathbb{R}$
 - $|x| \ge 0$ for all $x \in \mathbb{R}$.
 - |x| = 0 if and only if x = 0.
 - $\bullet |x \cdot y| = |x| \cdot |y|.$
 - $\bullet |x+y| \le |x|+|y|.$

Are there other valuations?

A rational number x = p/q can be written as

$$x = 2^n \cdot \frac{a}{b}$$
 for odd numbers *a* and *b*.

A rational number x = p/q can be written as

$$x = 2^n \cdot \frac{a}{b}$$
 for odd numbers *a* and *b*.

The **2-adic valuation** of x is

$$|x|_2 = (1/2)^n$$
.

A rational number x = p/q can be written as

$$x = 2^n \cdot \frac{a}{b}$$
 for odd numbers *a* and *b*.

The **2-adic valuation** of x is

$$|x|_2 = (1/2)^n$$
.

This is a different way of measuring the size of a number

A rational number x = p/q can be written as

$$x = 2^n \cdot \frac{a}{b}$$
 for odd numbers *a* and *b*.

The **2-adic valuation** of x is

$$|x|_2 = (1/2)^n$$
.

This is a different way of measuring the size of a number—numbers that are divisible by powers of two are small.

$$|0|_2 = 0?$$

$$egin{array}{c} |0|_2 = 0 \ |1|_2 = \end{array}$$

$$egin{array}{c} |0|_2 = 0 \ |1|_2 = 1 \end{array}$$

$$egin{array}{l} |0|_2 = 0 \ |1|_2 = 1 \ |2|_2 = \end{array}$$

$$egin{aligned} |0|_2 &= 0 \ |1|_2 &= 1 \ |2|_2 &= 1/2 \end{aligned}$$

$$egin{aligned} |0|_2 &= 0 \ |1|_2 &= 1 \ |2|_2 &= 1/2 \ |6|_2 &= \end{aligned}$$

$$egin{aligned} |0|_2 &= 0 \ |1|_2 &= 1 \ |2|_2 &= 1/2 \ |6|_2 &= 1/2 \end{aligned}$$

$$egin{aligned} |0|_2 &= 0 \ |1|_2 &= 1 \ |2|_2 &= 1/2 \ |6|_2 &= 1/2 \ |4|_2 &= \end{aligned}$$

$$egin{aligned} |0|_2 &= 0 \ |1|_2 &= 1 \ |2|_2 &= 1/2 \ |6|_2 &= 1/2 \ |4|_2 &= 1/4 \end{aligned}$$

$$\begin{aligned} |0|_2 &= 0\\ |1|_2 &= 1\\ |2|_2 &= 1/2\\ |6|_2 &= 1/2\\ |4|_2 &= 1/4\\ 20|_2 &= \end{aligned}$$

$$\begin{aligned} |0|_2 &= 0\\ |1|_2 &= 1\\ |2|_2 &= 1/2\\ |6|_2 &= 1/2\\ |4|_2 &= 1/4\\ 20|_2 &= 1/4 \end{aligned}$$

$$\begin{aligned} |0|_2 &= 0\\ |1|_2 &= 1\\ |2|_2 &= 1/2\\ |6|_2 &= 1/2\\ |4|_2 &= 1/4\\ 20|_2 &= 1/4 \end{aligned}$$

$$|1/3|_2 =$$

$$\begin{aligned} |0|_2 &= 0\\ |1|_2 &= 1\\ |2|_2 &= 1/2\\ |6|_2 &= 1/2\\ |4|_2 &= 1/4\\ 20|_2 &= 1/4 \end{aligned}$$

$$|1/3|_2 = 1$$

$$\begin{aligned} |0|_2 &= 0\\ |1|_2 &= 1\\ |2|_2 &= 1/2\\ |6|_2 &= 1/2\\ |4|_2 &= 1/4\\ 20|_2 &= 1/4 \end{aligned}$$

$$|1/3|_2 = 1$$

 $|5/3|_2 =$

$$\begin{aligned} |0|_2 &= 0\\ |1|_2 &= 1\\ |2|_2 &= 1/2\\ |6|_2 &= 1/2\\ |4|_2 &= 1/4\\ 20|_2 &= 1/4 \end{aligned}$$

$$|1/3|_2 = 1$$

 $|5/3|_2 = 1$

$$\begin{aligned} |0|_2 &= 0\\ |1|_2 &= 1\\ |2|_2 &= 1/2\\ |6|_2 &= 1/2\\ |4|_2 &= 1/4\\ 20|_2 &= 1/4 \end{aligned}$$

$$egin{array}{c} |1/3|_2 = 1 \ |5/3|_2 = 1 \ |1/4|_2 = \end{array}$$

$$\begin{aligned} |0|_2 &= 0\\ |1|_2 &= 1\\ |2|_2 &= 1/2\\ |6|_2 &= 1/2\\ |4|_2 &= 1/4\\ 20|_2 &= 1/4 \end{aligned}$$

$$egin{array}{c} |1/3|_2 = 1 \ |5/3|_2 = 1 \ |1/4|_2 = 4 \end{array}$$

$$\begin{aligned} |0|_2 &= 0\\ |1|_2 &= 1\\ |2|_2 &= 1/2\\ |6|_2 &= 1/2\\ |4|_2 &= 1/4\\ 20|_2 &= 1/4 \end{aligned}$$

$$egin{array}{c} |1/3|_2 = 1 \ |5/3|_2 = 1 \ |1/4|_2 = 4 \ |1/20|_2 = \end{array}$$

$$\begin{aligned} |0|_2 &= 0\\ |1|_2 &= 1\\ |2|_2 &= 1/2\\ |6|_2 &= 1/2\\ |4|_2 &= 1/4\\ 20|_2 &= 1/4 \end{aligned}$$

$$egin{array}{c} |1/3|_2 = 1 \ |5/3|_2 = 1 \ |1/4|_2 = 4 \ |1/20|_2 = 4 \end{array}$$

$$\begin{aligned} |0|_2 &= 0\\ |1|_2 &= 1\\ |2|_2 &= 1/2\\ |6|_2 &= 1/2\\ |4|_2 &= 1/4\\ 20|_2 &= 1/4 \end{aligned}$$

$$|1/3|_{2} = 1$$
$$|5/3|_{2} = 1$$
$$|1/4|_{2} = 4$$
$$|1/20|_{2} = 4$$
$$|3/20|_{2} =$$

$$\begin{aligned} |0|_2 &= 0\\ |1|_2 &= 1\\ |2|_2 &= 1/2\\ |6|_2 &= 1/2\\ |4|_2 &= 1/4\\ 20|_2 &= 1/4 \end{aligned}$$

$$|1/3|_{2} = 1$$
$$|5/3|_{2} = 1$$
$$|1/4|_{2} = 4$$
$$|1/20|_{2} = 4$$
$$|3/20|_{2} = 4$$

$$\begin{aligned} |0|_2 &= 0\\ |1|_2 &= 1\\ |2|_2 &= 1/2\\ |6|_2 &= 1/2\\ |4|_2 &= 1/4\\ 20|_2 &= 1/4 \end{aligned}$$

$$\begin{aligned} |1/3|_2 &= 1\\ |5/3|_2 &= 1\\ |1/4|_2 &= 4\\ |1/20|_2 &= 4\\ |3/20|_2 &= 4\\ 13/16|_2 &= \end{aligned}$$

$$\begin{aligned} |0|_2 &= 0\\ |1|_2 &= 1\\ |2|_2 &= 1/2\\ |6|_2 &= 1/2\\ |4|_2 &= 1/4\\ 20|_2 &= 1/4 \end{aligned}$$

$$\begin{aligned} |1/3|_2 &= 1\\ |5/3|_2 &= 1\\ |1/4|_2 &= 4\\ |1/20|_2 &= 4\\ |3/20|_2 &= 4\\ 13/16|_2 &= 16 \end{aligned}$$

"All triangles are isoceles."

For any valuation,

$$|x+y|_2 \leq |x|_2 + |y|_2$$
.

"All triangles are isoceles."

For any valuation,

$$|x+y|_2 \leq |x|_2 + |y|_2$$
.

But for a 2-adic valuation, we actually have

$$|x + y|_2 \le \max\{|x|_2, |y|_2\}$$

"All triangles are isoceles."

For any valuation,

$$|x+y|_2 \leq |x|_2 + |y|_2$$
.

But for a 2-adic valuation, we actually have

$$|x + y|_2 \le \max\{|x|_2, |y|_2\}$$
 .

And if $|x|_2 \neq |y|_2$,

$$|x + y|_2 = \max\{|x|_2, |y|_2\}.$$

We can compute $|x|_2$ when x is rational.

We can compute $|x|_2$ when x is rational. But what is $|x|_2$ when x is irrational?

We can compute $|x|_2$ when x is rational. But what is $|x|_2$ when x is irrational?

What is $\left|\sqrt{3}\right|_2$?

We can compute $|x|_2$ when x is rational. But what is $|x|_2$ when x is irrational?

What is $|\sqrt{3}|_2$? $|\sqrt{3}|_2 \cdot |\sqrt{3}|_2$

We can compute $|x|_2$ when x is rational. But what is $|x|_2$ when x is irrational?

What is
$$|\sqrt{3}|_2$$
?
 $|\sqrt{3}|_2 \cdot |\sqrt{3}|_2 = |\sqrt{3} \cdot \sqrt{3}|_2 = |3|_2$

We can compute $|x|_2$ when x is rational. But what is $|x|_2$ when x is irrational?

What is
$$|\sqrt{3}|_2$$
? $|\sqrt{3}|_2 \cdot |\sqrt{3}|_2 = |\sqrt{3} \cdot \sqrt{3}|_2 = |3|_2 = 1$,

We can compute $|x|_2$ when x is rational. But what is $|x|_2$ when x is irrational?

What is
$$|\sqrt{3}|_2$$
?
 $|\sqrt{3}|_2 \cdot |\sqrt{3}|_2 = |\sqrt{3} \cdot \sqrt{3}|_2 = |3|_2 = 1$,
we must have $|\sqrt{3}|_2 = 1$.

$$\left|\sqrt{2}\right|_2 \cdot \left|\sqrt{2}\right|_2 = |2|_2$$

$$\left|\sqrt{2}\right|_2 \cdot \left|\sqrt{2}\right|_2 = \left|2\right|_2 = \frac{1}{2},$$

$$\begin{split} \left|\sqrt{2}\right|_2 \cdot \left|\sqrt{2}\right|_2 &= \left|2\right|_2 = \frac{1}{2}, \\ \text{and so} \\ \left|\sqrt{2}\right|_2 &= \sqrt{\frac{1}{2}}. \end{split}$$

What about other real numbers?

What about other real numbers? What about $|\pi|_2$?

- What about other real numbers? What about $|\pi|_2$?
- The **axiom of choice** implies that there *exists* a 2-adic valuation defined for all real numbers

What about other real numbers? What about $|\pi|_2$?

The **axiom of choice** implies that there *exists* a 2-adic valuation defined for all real numbers—but we can't write an example down.

Write $|x|_2$ for the 2-adic valuation of x.

Write $|x|_2$ for the 2-adic valuation of x.

 $|x|_2$ measures how many times 2 divides x.

Write $|x|_2$ for the 2-adic valuation of x.

 $|x|_2$ measures how many times 2 divides x. $|x|_2$ measures x's size from 2's perspective.

Write $|x|_2$ for the 2-adic valuation of x.

 $|x|_2$ measures how many times 2 divides x. $|x|_2$ measures x's size from 2's perspective.

Key Observation If *n* is an even integer, $|n|_2 < 1$. If *n* is an odd integer, $|n|_2 \ge 1$.

Two ingredients:

Sperner's Lemma 2-adic valuation.

Two ingredients:

Sperner's Lemma ^{and a} 2-adic valuation.

Two ingredients:

Sperner's Lemma 2-adic valuation.

The Original Question

We want to show that a square cannot be cut into an odd-number of equal-area triangles.

The Original Question

We want to show that a square cannot be cut into an odd-number of equal-area triangles.

So far, we have

- Sperner's lemma, and
- ► a 2-adic valuation.

How can we use these tools?

The Original Question

We want to show that a square cannot be cut into an odd-number of equal-area triangles.

So far, we have

- ► Sperner's lemma, and
- ► a 2-adic valuation.

How can we use these tools?

Paint by number. Use the 2-adic valuation to decide what color to give to the vertices.

Given: a **triangulation** of a square into *n* equal-area triangles.

Given: a **triangulation** of a square into *n* equal-area triangles.

Color a vertex at (x, y) with A if $|x|_2 < 1$ and $|y|_2 < 1$. B if $|x|_2 \ge 1$ and $|x|_2 \ge |y|_2$. C if $|y|_2 \ge 1$ and $|x|_2 < |y|_2$.

Given: a **triangulation** of a square into *n* equal-area triangles.

Color a vertex at (x, y) with A if $|x|_2 < 1$ and $|y|_2 < 1$. B if $|x|_2 \ge 1$ and $|x|_2 \ge |y|_2$. C if $|y|_2 \ge 1$ and $|x|_2 < |y|_2$.

We want to **prove** that *n* is even.

A: $|x|_2 < 1$ and $|y|_2 < 1$. **B**: $|x|_2 \ge 1$ and $|x|_2 \ge |y|_2$. **C**: $|y|_2 \ge 1$ and $|x|_2 < |y|_2$.

? (0,0)

A: $|x|_2 < 1$ and $|y|_2 < 1$. **B**: $|x|_2 \ge 1$ and $|x|_2 \ge |y|_2$. C: $|y|_2 \ge 1$ and $|x|_2 < |y|_2$.

A: $|x|_2 < 1$ and $|y|_2 < 1$. **B**: $|x|_2 \ge 1$ and $|x|_2 \ge |y|_2$. C: $|y|_2 \ge 1$ and $|x|_2 < |y|_2$.

A: $|x|_2 < 1$ and $|y|_2 < 1$. **B**: $|x|_2 \ge 1$ and $|x|_2 \ge |y|_2$. C: $|y|_2 \ge 1$ and $|x|_2 < |y|_2$.

A: $|x|_2 < 1$ and $|y|_2 < 1$. **B**: $|x|_2 \ge 1$ and $|x|_2 \ge |y|_2$. C: $|y|_2 \ge 1$ and $|x|_2 < |y|_2$.

A: $|x|_2 < 1$ and $|y|_2 < 1$. **B**: $|x|_2 \ge 1$ and $|x|_2 \ge |y|_2$. **C**: $|y|_2 \ge 1$ and $|x|_2 < |y|_2$.

Bottom: A or B Left: A or C Right: B or C

A: $|x|_2 < 1$ and $|y|_2 < 1$. B: $|x|_2 \ge 1$ and $|x|_2 \ge |y|_2$. C: $|y|_2 \ge 1$ and $|x|_2 < |y|_2$.

Bottom: A or B

- Left: A or C
- Right: B or C
- Top: **B** or **C**

A: $|x|_2 < 1$ and $|y|_2 < 1$.B: $|x|_2 \ge 1$ and $|x|_2 \ge |y|_2$.C: $|y|_2 \ge 1$ and $|x|_2 < |y|_2$.

Bottom:A orBLeft:A orCRight:B orCTop:B orC

Odd number of **AB** edges on perimeter

A: $|x|_2 < 1$ and $|y|_2 < 1$.B: $|x|_2 \ge 1$ and $|x|_2 \ge |y|_2$.C: $|y|_2 \ge 1$ and $|x|_2 < |y|_2$.

Bottom:A or BLeft:A or CRight:B or CTop:B or C

Odd number of AB edges on perimeter; get ABC triangle

What we know so far

In any triangulation of the square into n triangles, there is an **ABC** triangle.

In any triangulation of the square into *n* equal-area triangles, there is an **ABC** triangle.

In any triangulation of the square into *n* equal-area triangles, there is an **ABC** triangle.

Area of **ABC** triangle is $\frac{1}{n}$.

In any triangulation of the square into *n* equal-area triangles, there is an **ABC** triangle.

- Area of **ABC** triangle is $\frac{1}{n}$.
- **Key idea:** the area of a triangle is related to the color of its vertices.

In any triangulation of the square into *n* equal-area triangles, there is an **ABC** triangle.

Area of **ABC** triangle is $\frac{1}{n}$.

Key idea: the area of a triangle is related to the color of its vertices.

In fact, if r is the area of an ABC triangle, then $|r|_2 \ge 2$.

In any triangulation of the square into *n* equal-area triangles, there is an **ABC** triangle.

Area of **ABC** triangle is $\frac{1}{n}$.

Key idea: the area of a triangle is related to the color of its vertices.

In fact, if r is the area of an ABC triangle, then $|r|_2 \ge 2$. So $|1/n|_2 \ge 2$.

In any triangulation of the square into *n* equal-area triangles, there is an **ABC** triangle.

Area of **ABC** triangle is $\frac{1}{n}$.

Key idea: the area of a triangle is related to the color of its vertices.

In fact, if r is the area of an ABC triangle, then $|r|_2 \ge 2$. So $|1/n|_2 \ge 2$. So n is even.

 $\begin{array}{l} r = \text{area of ABC triangle with vertices} \\ \left(\begin{array}{c} 0, \end{array}{0} \right) \text{ colored A} \\ \left(x_b, \hspace{0.5mm} y_b \right) \text{ colored B so } |x_b|_2 \geq 1 \text{ and} \\ |x_b|_2 \geq |y_b|_2 \\ \left(x_c, \hspace{0.5mm} y_c \right) \text{ colored C so } |y_c|_2 \geq 1 \text{ and} \\ |y_c|_2 > |x_c|_2 \end{array}$

 $\begin{array}{l} r = \text{area of } \textbf{ABC} \text{ triangle with vertices} \\ (0, 0) \text{ colored } \textbf{A} \\ (x_b, y_b) \text{ colored } \textbf{B} \text{ so } |x_b|_2 \geq 1 \text{ and} \\ |x_b|_2 \geq |y_b|_2 \\ (x_c, y_c) \text{ colored } \textbf{C} \text{ so } |y_c|_2 \geq 1 \text{ and} \\ |y_c|_2 > |x_c|_2 \end{array}$

$$r = \frac{1}{2} \cdot (x_b y_c - x_c y_b)$$

r = area of ABC triangle with vertices (0, 0) colored A (x_b , y_b) colored B so $|x_b|_2 \ge 1$ and $|x_b|_2 \ge |y_b|_2$ (x_c , y_c) colored C so $|y_c|_2 \ge 1$ and $|y_c|_2 > |x_c|_2$

$$|r|_{2} = \left|\frac{1}{2}\right|_{2} \cdot |x_{b} y_{c} - x_{c} y_{b}|_{2}$$

 $\begin{array}{l} r = \text{area of } \textbf{ABC} \text{ triangle with vertices} \\ (0, 0) \text{ colored } \textbf{A} \\ (x_b, y_b) \text{ colored } \textbf{B} \text{ so } |x_b|_2 \geq 1 \text{ and} \\ |x_b|_2 \geq |y_b|_2 \\ (x_c, y_c) \text{ colored } \textbf{C} \text{ so } |y_c|_2 \geq 1 \text{ and} \\ |y_c|_2 > |x_c|_2 \end{array}$

$$|\mathbf{r}|_2 = 2 \cdot |\mathbf{x}_b \mathbf{y}_c - \mathbf{x}_c \mathbf{y}_b|_2$$

r = area of ABC triangle with vertices (0, 0) colored A (x_b , y_b) colored B so $|x_b|_2 \ge 1$ and $|x_b|_2 \ge |y_b|_2$ (x_c , y_c) colored C so $|y_c|_2 \ge 1$ and $|y_c|_2 > |x_c|_2$

$$|r|_2 = 2 \cdot |x_b y_c - x_c y_b|_2$$

= 2 \cdot max { $|x_b y_c|_2, |x_c y_b|_2$ }

 $\begin{array}{l} r = \text{area of ABC triangle with vertices} \\ (0, 0) \text{ colored A} \\ (x_b, y_b) \text{ colored B so } |x_b|_2 \geq 1 \text{ and} \\ |x_b|_2 \geq |y_b|_2 \\ (x_c, y_c) \text{ colored C so } |y_c|_2 \geq 1 \text{ and} \\ |y_c|_2 > |x_c|_2 \end{array}$

$$|r|_2 = 2 \cdot |x_b y_c - x_c y_b|_2$$

$$= 2 \cdot \max\left\{\left|x_b y_c\right|_2, \left|x_c y_b\right|_2\right\}$$

$$= 2 \cdot |x_b y_c|_2$$

 $\begin{array}{l} r = \text{area of } \textbf{ABC} \text{ triangle with vertices} \\ (0, 0) \text{ colored } \textbf{A} \\ (x_b, y_b) \text{ colored } \textbf{B} \text{ so } |x_b|_2 \geq 1 \text{ and} \\ |x_b|_2 \geq |y_b|_2 \\ (x_c, y_c) \text{ colored } \textbf{C} \text{ so } |y_c|_2 \geq 1 \text{ and} \\ |y_c|_2 > |x_c|_2 \end{array}$

$$|r|_{2} = 2 \cdot |x_{b} y_{c} - x_{c} y_{b}|_{2}$$

= 2 \cdot max { |x_{b} y_{c}|_{2}, |x_{c} y_{b}|_{2}
= 2 \cdot |x_{b}|_{2} \cdot |y_{c}|_{2}

 $\begin{array}{l} r = \text{area of ABC triangle with vertices} \\ (0, 0) \text{ colored A} \\ (x_b, y_b) \text{ colored B so } |x_b|_2 \geq 1 \text{ and} \\ |x_b|_2 \geq |y_b|_2 \\ (x_c, y_c) \text{ colored C so } |y_c|_2 \geq 1 \text{ and} \\ |y_c|_2 > |x_c|_2 \end{array}$

$$|r|_{2} = 2 \cdot |x_{b} y_{c} - x_{c} y_{b}|_{2}$$

= 2 \cdot max { |x_{b} y_{c}|_{2}, |x_{c} y_{b}|_{2} }
= 2 \cdot |x_{b}|_{2} \cdot |y_{c}|_{2} \ge 2.

Let r be the area of an **ABC** triangle, with vertices

 (x_a , y_a) colored A (x_b , y_b) colored B (x_c , y_c) colored C

Let r be the area of an **ABC** triangle, with vertices translated by $(-x_a, -y_a)$

> $(x_a - x_a, y_a - y_a)$ colored A? $(x_b - x_a, y_b - y_a)$ colored B? $(x_c - x_a, y_c - y_a)$ colored C?

Let r be the area of an **ABC** triangle, with vertices translated by $(-x_a, -y_a)$

$$(x_a - x_a, y_a - y_a)$$
 colored A
 $(x_b - x_a, y_b - y_a)$ colored B
 $(x_c - x_a, y_c - y_a)$ colored C

Translating by a point colored A preserves the colors.

Let r be the area of an **ABC** triangle, with vertices translated by $(-x_a, -y_a)$

$$(x_a - x_a, y_a - y_a)$$
 colored A
 $(x_b - x_a, y_b - y_a)$ colored B
 $(x_c - x_a, y_c - y_a)$ colored C

Translating by a point colored A preserves the colors.

The previous calculation proves $|r|_2 \ge 2$.

Let *n* be the number of equal-area triangles, each having area r = 1/n.

Let *n* be the number of equal-area triangles, each having area r = 1/n.

Then
$$|n \cdot r|_2 = |1|_2 = 1$$
.

Let *n* be the number of equal-area triangles, each having area r = 1/n.

Then
$$|n \cdot r|_2 = |1|_2 = 1$$
.
But $|r|_2 \ge 2$, so $|n|_2 \le 1/2$, so *n* is even.

Let *n* be the number of equal-area triangles, each having area r = 1/n.

Then
$$|n \cdot r|_2 = |1|_2 = 1$$
.
But $|r|_2 \ge 2$, so $|n|_2 \le 1/2$, so *n* is even.

Other polygons

n is in the **spectrum** of a polygon P if P can be divided in *n* equal-area triangles.

Bibliography

Where can I learn more?

Bibliography

Where can I learn more?

 Paul Monsky. "On dividing a square into triangles." *Amer. Math. Monthly* 77 1970 161–164.

Bibliography

Where can I learn more?

- Paul Monsky. "On dividing a square into triangles." *Amer. Math. Monthly* 77 1970 161–164.
- Sherman Stein and Szabó Sándor. Algebra and tiling. Homomorphisms in the service of geometry. Carus Mathematical Monographs 25. MAA. 1994.

Thank You!