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Sperner’s Lemma

No matter how you triangulate,

or how you color the vertices,

the number of perimeter AB edges, and

the number of ABC triangles

are both odd or both even.
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We want to show that a square cannot be cut

into an odd-number of equal-area triangles.

So far, we have

I Sperner’s lemma, and

I a 2-adic valuation.

How can we use these tools?

Paint by number. Use the 2-adic valuation

to decide what color to give to the vertices.
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Right: B or C
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⇒
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; get
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Key idea: the area of a triangle is related

to the color of its vertices.

In fact, if r is the area of an ABC triangle,

then |r |2 ≥ 2. So |1/n|2 ≥ 2. So n is even.
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r = area of ABC triangle with vertices
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|xb|2 ≥ |yb|2
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|yc |2 > |xc |2

r =
1

2
· (xb yc − xc yb)

= 2 · max {|xbyc |2 , |xcyb|2}
= 2 · |xb|2 · |yc |2 ≥ 2.
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Other polygons

α

1

1

T (α)

n is in the spectrum of a polygon P

if P can be divided in n equal-area triangles.
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