Cutting squares into equal-area triangles

Jim Fowler

A talk for $\sqrt{\pi}$

Can you cut a square

into equal-area triangles?

Can you cut a square

into 2 equal-area triangles?

Can you cut a square

into 2 equal-area triangles? Yes.

Can you cut a square

into 4 equal-area triangles?

Can you cut a square

into 4 equal-area triangles? Yes.

Can you cut a square

into 6 equal-area triangles?

Can you cut a square

into 6 equal-area triangles? Yes.

Can you cut a square

into $\mathbf{3}$ equal-area triangles?

Can you cut a square

into 5 equal-area triangles?

Can you cut a square

into an odd number of equal-area triangles?

Question

Can a square be divided into an odd number of triangles each having the same area?

> This question could have been asked two thousand years ago!

How do we split

 a square sandwich among 5 friends?
Question

Can a square be divided into an odd number of triangles each having the same area?

Question

Can a square be divided into an odd number of triangles each having the same area?

Answer

No. It cannot be done.

Question

Can a square be divided into an odd number of triangles each having the same area?

Answer

No. It cannot be done.
Why not. . ?

The Proof

Two ingredients:

Sperner's Lemma and a
 2-adic valuation.

The Proof

Two ingredients:

Sperner's Lemma
 2-adic valuation.

Some Notation

$$
a \equiv b \quad(\bmod 2)
$$

means a and b are both even or both odd,

Some Notation

$$
a \equiv b \quad(\bmod 2)
$$

means a and b are both even or both odd, means $a-b$ is divisible by two.

Some Notation

$$
a \equiv b \quad(\bmod 2)
$$

means a and b are both even or both odd, means $a-b$ is divisible by two.
"a is congruent to b, modulo two."

Some Notation

$$
a \equiv b \quad(\bmod 2)
$$

means a and b are both even or both odd, means $a-b$ is divisible by two.
" a is congruent to b, modulo two."
$1 \equiv 3(\bmod 2)$,

Some Notation

$$
a \equiv b \quad(\bmod 2)
$$

means a and b are both even or both odd, means $a-b$ is divisible by two.
" a is congruent to b, modulo two."
$1 \equiv 3(\bmod 2)$, but $2 \not \equiv 5(\bmod 2)$.

Some Notation

$$
a \equiv b \quad(\bmod 2)
$$

means a and b are both even or both odd, means $a-b$ is divisible by two.
" a is congruent to b, modulo two."
$1 \equiv 3(\bmod 2)$, but $2 \not \equiv 5(\bmod 2)$.
$0 \equiv 16(\bmod 2)$,

Some Notation

$$
a \equiv b \quad(\bmod 2)
$$

means a and b are both even or both odd, means $a-b$ is divisible by two.
" a is congruent to b, modulo two."
$1 \equiv 3(\bmod 2)$, but $2 \not \equiv 5(\bmod 2)$.
$0 \equiv 16(\bmod 2)$, but $1 \not \equiv 2(\bmod 2)$.

Sperner's Lemma

Sperner's Lemma

Triangulate.

Sperner's Lemma

Triangulate. Color vertices A, B, or C .

Sperner's Lemma

Triangulate. Color vertices A, B, or C .
AB edges $=\mathrm{ABC}$ on perimeter $\equiv \underset{\text { triangles }}{ }(\bmod 2)$

Sperner's Lemma

Triangulate. Color vertices A, B, or C .
AB edges $=\mathrm{ABC}$ on perimeter $\equiv \underset{\text { triangles }}{ }(\bmod 2)$

Sperner's Lemma

Triangulate. Color vertices A, B, or C .
AB edges $=\mathrm{ABC}$ on perimeter \equiv triangles $(\bmod 2)$

Sperner's Lemma

Triangulate. Color vertices A, B, or C .
AB edges $=\mathrm{ABC}$ on perimeter \equiv triangles $(\bmod 2)$

Sperner's Lemma

Triangulate. Color vertices A, B, or C .
AB edges $=\mathrm{ABC}$ on perimeter $\equiv \underset{\text { triangles }}{ }(\bmod 2)$

It doesn't matter how we color the vertices.

AB edges $=\mathrm{ABC}$ on perimeter $\equiv \underset{\text { triangles }}{ }(\bmod 2)$

It doesn't matter how we color the vertices.

AB edges $=\mathrm{ABC}$ on perimeter $\equiv_{\text {triangles }}(\bmod 2)$

It doesn't matter how we color the vertices.

AB edges $=\mathrm{ABC}$ on perimeter $\equiv \underset{\text { triangles }}{ }(\bmod 2)$

It doesn't matter how we color the vertices.

AB edges $=\mathrm{ABC}$ on perimeter $\equiv \underset{\text { triangles }}{ }(\bmod 2)$

It doesn't matter how we color the vertices.

AB edges $=\mathrm{ABC}$ on perimeter $\equiv \underset{\text { triangles }}{ }(\bmod 2)$

It doesn't matter how we color the vertices.

AB edges $=\mathrm{ABC}$ on perimeter $\equiv{ }_{\text {triangles }}(\bmod 2)$

A Proof of Sperner's Lemma

A Proof of Sperner's Lemma

On the inside of the square, on each side of $A B$ edges, place a pebble.

A Proof of Sperner's Lemma

On the inside of the square, on each side of $A B$ edges, place a pebble.

Count the pebbles

A Proof of Sperner's Lemma

On the inside of the square, on each side of $A B$ edges, place a pebble.

Count the pebbles-in two different ways.

A Proof of Sperner's Lemma

A Proof of Sperner's Lemma

Each $A B C$ triangle gives one pebble.

A Proof of Sperner's Lemma

Each $A B C$ triangle gives one pebble.

A Proof of Sperner's Lemma

Each $A B C$ triangle gives one pebble.
Other triangles give zero or two pebbles.

A Proof of Sperner's Lemma

Each ABC triangle gives one pebble.
Other triangles give zero or two pebbles.

A Proof of Sperner's Lemma

Each $A B C$ triangle gives one pebble.
Other triangles give zero or two pebbles.

ABC
pebbles $\equiv \underset{\text { triangles }}{\text { ABC }}(\bmod 2)$

A Proof of Sperner's Lemma

A Proof of Sperner's Lemma

Each AB edge on the perimeter gives one pebble.

A Proof of Sperner's Lemma

Each AB edge on the perimeter gives one pebble.

A Proof of Sperner's Lemma

Each AB edge on the perimeter gives one pebble.
Other edges give zero or two pebbles.

A Proof of Sperner's Lemma

Each AB edge on the perimeter gives one pebble.
Other edges give zero or two pebbles.

A Proof of Sperner's Lemma

Each $A B$ edge on the perimeter gives one pebble. Other edges give zero or two pebbles.
pebbles $\equiv \mathrm{AB}$ edges on perimeter
$(\bmod 2)$

Proof of Sperner's Lemma

ABC triangles
\equiv pebbles $(\bmod 2)$

Proof of Sperner's Lemma

ABC triangles \equiv pebbles $(\bmod 2)$ and

AB edges on perimeter \equiv pebbles $(\bmod 2)$

Proof of Sperner's Lemma

ABC
triangles \equiv pebbles $(\bmod 2)$ and

AB edges
on perimeter \equiv pebbles $(\bmod 2)$ so
$\underset{\text { on perimeter }}{\mathrm{AB} \text { edges }} \equiv \underset{\text { triangles }}{\mathrm{ABC}}(\bmod 2)$.

Sperner's Lemma

No matter how you triangulate, or how you color the vertices,
the number of perimeter $A B$ edges, and the number of $A B C$ triangles
are both odd or both even.

Applying Sperner's Lemma

An odd number of perimeter $A B$ edges \Rightarrow
An odd number of $A B C$ triangles.

Applying Sperner's Lemma

An odd number of perimeter $A B$ edges \Rightarrow An odd number of $A B C$ triangles.

An odd number of perimeter $A B$ edges \Rightarrow there exists an $A B C$ triangle!

The Proof

Two ingredients:

Sperner's Lemma and a
 2-adic valuation.

The Proof

Two ingredients:
Sperner's Lemma
2-adic valuation.

2-adic valuation

In addition to Sperner's lemma, we need a 2 -adic valuation.

2-adic valuation

In addition to Sperner's lemma, we need a 2-adic valuation.

Before talking about 2-adic valuations, let's talk about valuations.

Valuations

Absolute value is an example of a valuation.

Valuations

Absolute value is an example of a valuation.
A valuation measures how big a number is.

Valuations

Absolute value is an example of a valuation.
A valuation measures how big a number is.
A valuation is a function $|\cdot|: \mathbb{R} \rightarrow \mathbb{R}$

- $|x| \geq 0$ for all $x \in \mathbb{R}$.

Valuations

Absolute value is an example of a valuation.
A valuation measures how big a number is.
A valuation is a function $|\cdot|: \mathbb{R} \rightarrow \mathbb{R}$

- $|x| \geq 0$ for all $x \in \mathbb{R}$.
- $|x|=0$ if and only if $x=0$.

Valuations

Absolute value is an example of a valuation.
A valuation measures how big a number is.
A valuation is a function $|\cdot|: \mathbb{R} \rightarrow \mathbb{R}$

- $|x| \geq 0$ for all $x \in \mathbb{R}$.
- $|x|=0$ if and only if $x=0$.
- $|x \cdot y|=|x| \cdot|y|$.

Valuations

Absolute value is an example of a valuation.
A valuation measures how big a number is.
A valuation is a function $|\cdot|: \mathbb{R} \rightarrow \mathbb{R}$

- $|x| \geq 0$ for all $x \in \mathbb{R}$.
- $|x|=0$ if and only if $x=0$.
- $|x \cdot y|=|x| \cdot|y|$.
- $|x+y| \leq|x|+|y|$.

Valuations

Absolute value is an example of a valuation.
A valuation measures how big a number is.
A valuation is a function $|\cdot|: \mathbb{R} \rightarrow \mathbb{R}$

- $|x| \geq 0$ for all $x \in \mathbb{R}$.
- $|x|=0$ if and only if $x=0$.
- $|x \cdot y|=|x| \cdot|y|$.
- $|x+y| \leq|x|+|y|$.

Are there other valuations?

2-adic valuation

A rational number $x=p / q$ can be written as
$x=2^{n} \cdot \frac{a}{b}$ for odd numbers a and b.

2-adic valuation

A rational number $x=p / q$ can be written as

$$
x=2^{n} \cdot \frac{a}{b} \text { for odd numbers } a \text { and } b
$$

The 2-adic valuation of x is

$$
|x|_{2}=(1 / 2)^{n}
$$

2-adic valuation

A rational number $x=p / q$ can be written as $x=2^{n} \cdot \frac{a}{b}$ for odd numbers a and b.

The 2-adic valuation of x is

$$
|x|_{2}=(1 / 2)^{n}
$$

This is a different way of measuring the size of a number

2-adic valuation

A rational number $x=p / q$ can be written as $x=2^{n} \cdot \frac{a}{b}$ for odd numbers a and b.

The 2-adic valuation of x is

$$
|x|_{2}=(1 / 2)^{n}
$$

This is a different way of measuring the size of a number-numbers that are divisible by powers of two are small.

2-adic valuation
a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
|0|_{2}=0 ?
$$

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
\begin{aligned}
& |0|_{2}=0 \\
& |1|_{2}=
\end{aligned}
$$

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
\begin{aligned}
& |0|_{2}=0 \\
& |1|_{2}=1
\end{aligned}
$$

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
\begin{aligned}
& |0|_{2}=0 \\
& |1|_{2}=1 \\
& |2|_{2}=
\end{aligned}
$$

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
\begin{aligned}
|0|_{2} & =0 \\
|1|_{2} & =1 \\
|2|_{2} & =1 / 2
\end{aligned}
$$

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
\begin{aligned}
& |0|_{2}=0 \\
& |1|_{2}=1 \\
& |2|_{2}=1 / 2 \\
& |6|_{2}=
\end{aligned}
$$

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
\begin{aligned}
& |0|_{2}=0 \\
& |1|_{2}=1 \\
& |2|_{2}=1 / 2 \\
& |6|_{2}=1 / 2
\end{aligned}
$$

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
\begin{aligned}
|0|_{2} & =0 \\
|1|_{2} & =1 \\
|2|_{2} & =1 / 2 \\
|6|_{2} & =1 / 2 \\
|4|_{2} & =
\end{aligned}
$$

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
\begin{aligned}
|0|_{2} & =0 \\
|1|_{2} & =1 \\
|2|_{2} & =1 / 2 \\
|6|_{2} & =1 / 2 \\
|4|_{2} & =1 / 4
\end{aligned}
$$

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
\begin{aligned}
|0|_{2} & =0 \\
|1|_{2} & =1 \\
|2|_{2} & =1 / 2 \\
|6|_{2} & =1 / 2 \\
|4|_{2} & =1 / 4 \\
|20|_{2} & =
\end{aligned}
$$

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
\begin{aligned}
|0|_{2} & =0 \\
|1|_{2} & =1 \\
|2|_{2} & =1 / 2 \\
|6|_{2} & =1 / 2 \\
|4|_{2} & =1 / 4 \\
|20|_{2} & =1 / 4
\end{aligned}
$$

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
\begin{aligned}
|0|_{2} & =0 \quad|1 / 3|_{2}= \\
|1|_{2} & =1 \\
|2|_{2} & =1 / 2 \\
|6|_{2} & =1 / 2 \\
|4|_{2} & =1 / 4 \\
|20|_{2} & =1 / 4
\end{aligned}
$$

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
\begin{aligned}
|0|_{2} & =0 \quad|1 / 3|_{2}=1 \\
|1|_{2} & =1 \\
|2|_{2} & =1 / 2 \\
|6|_{2} & =1 / 2 \\
|4|_{2} & =1 / 4 \\
|20|_{2} & =1 / 4
\end{aligned}
$$

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
\begin{aligned}
|0|_{2} & =0 & |1 / 3|_{2}=1 \\
|1|_{2} & =1 & |5 / 3|_{2}= \\
|2|_{2} & =1 / 2 & \\
|6|_{2} & =1 / 2 & \\
|4|_{2} & =1 / 4 & \\
|20|_{2} & =1 / 4 &
\end{aligned}
$$

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
\begin{aligned}
|0|_{2} & =0 \\
|1|_{2} & =1 \\
|2|_{2} & =1 / 2 \\
|6|_{2} & =1 / 2 \\
|4|_{2} & =1 / 4 \\
|20|_{2} & =1 / 4
\end{aligned}
$$

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
\begin{aligned}
|0|_{2} & =0 & |1 / 3|_{2}=1 \\
|1|_{2} & =1 & |5 / 3|_{2}=1 \\
|2|_{2} & =1 / 2 & |1 / 4|_{2}= \\
|6|_{2} & =1 / 2 & \\
|4|_{2} & =1 / 4 & \\
|20|_{2} & =1 / 4 &
\end{aligned}
$$

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
\begin{aligned}
|0|_{2} & =0 & |1 / 3|_{2}=1 \\
|1|_{2} & =1 & |5 / 3|_{2}=1 \\
|2|_{2} & =1 / 2 & |1 / 4|_{2}=4 \\
|6|_{2} & =1 / 2 & \\
|4|_{2} & =1 / 4 & \\
|20|_{2} & =1 / 4 &
\end{aligned}
$$

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
\begin{array}{rlrl}
|0|_{2} & =0 & |1 / 3|_{2} & =1 \\
|1|_{2} & =1 & |5 / 3|_{2} & =1 \\
|2|_{2} & =1 / 2 & |1 / 4|_{2}=4 \\
|6|_{2} & =1 / 2 & |1 / 20|_{2}= \\
|4|_{2} & =1 / 4 & \\
|20|_{2} & =1 / 4 &
\end{array}
$$

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
\begin{array}{rlrl}
|0|_{2} & =0 & |1 / 3|_{2} & =1 \\
|1|_{2} & =1 & |5 / 3|_{2} & =1 \\
|2|_{2} & =1 / 2 & |1 / 4|_{2}=4 \\
|6|_{2} & =1 / 2 & |1 / 20|_{2}=4 \\
|4|_{2} & =1 / 4 & \\
|20|_{2} & =1 / 4 &
\end{array}
$$

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
\begin{array}{rlrl}
|0|_{2} & =0 & |1 / 3|_{2} & =1 \\
|1|_{2} & =1 & |5 / 3|_{2} & =1 \\
|2|_{2} & =1 / 2 & |1 / 4|_{2} & =4 \\
|6|_{2} & =1 / 2 & |1 / 20|_{2}=4 \\
|4|_{2} & =1 / 4 & |3 / 20|_{2}= \\
|20|_{2} & =1 / 4 &
\end{array}
$$

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
\begin{array}{rlrl}
|0|_{2} & =0 & |1 / 3|_{2} & =1 \\
|1|_{2} & =1 & |5 / 3|_{2} & =1 \\
|2|_{2} & =1 / 2 & |1 / 4|_{2} & =4 \\
|6|_{2} & =1 / 2 & |1 / 20|_{2}=4 \\
|4|_{2} & =1 / 4 & |3 / 20|_{2}=4 \\
|20|_{2} & =1 / 4 &
\end{array}
$$

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
\begin{aligned}
|0|_{2} & =0 & |1 / 3|_{2} & =1 \\
|1|_{2} & =1 & |5 / 3|_{2} & =1 \\
|2|_{2} & =1 / 2 & |1 / 4|_{2} & =4 \\
|6|_{2} & =1 / 2 & |1 / 20|_{2} & =4 \\
|4|_{2} & =1 / 4 & |3 / 20|_{2} & =4 \\
|20|_{2} & =1 / 4 & |13 / 16|_{2} & =
\end{aligned}
$$

2-adic valuation

a and b odd, $x=2^{n} \cdot \frac{a}{b} \Rightarrow|x|_{2}=(1 / 2)^{n}$.

$$
\begin{array}{rlr}
|0|_{2} & =0 & |1 / 3|_{2}
\end{array}=1
$$

"All triangles are isoceles."

For any valuation,

$$
|x+y|_{2} \leq|x|_{2}+|y|_{2} .
$$

"All triangles are isoceles."

For any valuation,

$$
|x+y|_{2} \leq|x|_{2}+|y|_{2} .
$$

But for a 2-adic valuation, we actually have

$$
|x+y|_{2} \leq \max \left\{|x|_{2},|y|_{2}\right\} .
$$

"All triangles are isoceles."

For any valuation,

$$
|x+y|_{2} \leq|x|_{2}+|y|_{2} .
$$

But for a 2-adic valuation, we actually have

$$
|x+y|_{2} \leq \max \left\{|x|_{2},|y|_{2}\right\}
$$

And if $|x|_{2} \neq|y|_{2}$,

$$
|x+y|_{2}=\max \left\{|x|_{2},|y|_{2}\right\} .
$$

Valuations of Irrationals

We can compute $|x|_{2}$ when x is rational.

Valuations of Irrationals

We can compute $|x|_{2}$ when x is rational. But what is $|x|_{2}$ when x is irrational?

Valuations of Irrationals

We can compute $|x|_{2}$ when x is rational. But what is $|x|_{2}$ when x is irrational?

What is $|\sqrt{3}|_{2}$?

Valuations of Irrationals

We can compute $|x|_{2}$ when x is rational. But what is $|x|_{2}$ when x is irrational?

What is $|\sqrt{3}|_{2}$?
$|\sqrt{3}|_{2} \cdot|\sqrt{3}|_{2}$

Valuations of Irrationals

We can compute $|x|_{2}$ when x is rational.
But what is $|x|_{2}$ when x is irrational?
What is $|\sqrt{3}|_{2}$?
$|\sqrt{3}|_{2} \cdot|\sqrt{3}|_{2}=|\sqrt{3} \cdot \sqrt{3}|_{2}=|3|_{2}$

Valuations of Irrationals

We can compute $|x|_{2}$ when x is rational.
But what is $|x|_{2}$ when x is irrational?
What is $|\sqrt{3}|_{2}$?
$|\sqrt{3}|_{2} \cdot|\sqrt{3}|_{2}=|\sqrt{3} \cdot \sqrt{3}|_{2}=|3|_{2}=1$,

Valuations of Irrationals

We can compute $|x|_{2}$ when x is rational.
But what is $|x|_{2}$ when x is irrational?
What is $|\sqrt{3}|_{2}$?
$|\sqrt{3}|_{2} \cdot|\sqrt{3}|_{2}=|\sqrt{3} \cdot \sqrt{3}|_{2}=|3|_{2}=1$,
we must have $|\sqrt{3}|_{2}=1$.

Valuations of Irrationals

What about $|\sqrt{2}|_{2}$?

Valuations of Irrationals

What about $|\sqrt{2}|_{2}$?

$$
|\sqrt{2}|_{2} \cdot|\sqrt{2}|_{2}=|2|_{2}
$$

Valuations of Irrationals

What about $|\sqrt{2}|_{2}$?

$$
|\sqrt{2}|_{2} \cdot|\sqrt{2}|_{2}=|2|_{2}=\frac{1}{2}
$$

Valuations of Irrationals

What about $|\sqrt{2}|_{2}$?

$$
|\sqrt{2}|_{2} \cdot|\sqrt{2}|_{2}=|2|_{2}=\frac{1}{2}
$$

and so

$$
|\sqrt{2}|_{2}=\sqrt{\frac{1}{2}}
$$

Valuations of Irrationals

What about other real numbers?

Valuations of Irrationals

What about other real numbers?
What about $|\pi|_{2}$?

Valuations of Irrationals

What about other real numbers?
What about $|\pi|_{2}$?

The axiom of choice implies that there exists a 2 -adic valuation defined for all real numbers

Valuations of Irrationals

What about other real numbers?
What about $|\pi|_{2}$?

The axiom of choice implies that there exists a 2-adic valuation defined for all real numbers-but we can't write an example down.

2-adic valuation: Review

Write $|x|_{2}$ for the 2-adic valuation of x.

2-adic valuation: Review

Write $|x|_{2}$ for the 2-adic valuation of x.
$|x|_{2}$ measures how many times 2 divides x.

2-adic valuation: Review

Write $|x|_{2}$ for the 2-adic valuation of x.
$|x|_{2}$ measures how many times 2 divides x.
$|x|_{2}$ measures x 's size from 2's perspective.

2-adic valuation: Review

Write $|x|_{2}$ for the 2-adic valuation of x.
$|x|_{2}$ measures how many times 2 divides x.
$|x|_{2}$ measures x 's size from 2's perspective.

Key Observation

If n is an even integer, $|n|_{2}<1$.
If n is an odd integer, $|n|_{2} \geq 1$.

The Proof

Two ingredients:

Sperner's Lemma and a
 2-adic valuation.

The Proof

Two ingredients:

Sperner's Lemma
 2-adic valuation.

The Proof

Two ingredients:
Sperner's Lemma
2-adic valuation.

The Original Question

We want to show that a square cannot be cut into an odd-number of equal-area triangles.

The Original Question

We want to show that a square cannot be cut into an odd-number of equal-area triangles.

So far, we have

- Sperner's lemma, and - a 2-adic valuation.

How can we use these tools?

The Original Question

We want to show that a square cannot be cut into an odd-number of equal-area triangles.

So far, we have

- Sperner's lemma, and
- a 2-adic valuation.

How can we use these tools?
Paint by number. Use the 2-adic valuation to decide what color to give to the vertices.

The Proof

Given: a triangulation of a square into n equal-area triangles.

The Proof

Given: a triangulation of a square into n equal-area triangles.

Color a vertex at (x, y) with

$$
\begin{aligned}
& \mathrm{A} \text { if }|x|_{2}<1 \text { and }|y|_{2}<1 . \\
& \mathrm{B} \text { if }|x|_{2} \geq 1 \text { and }|x|_{2} \geq|y|_{2} . \\
& \mathrm{C} \text { if }|y|_{2} \geq 1 \text { and }|x|_{2}<|y|_{2} .
\end{aligned}
$$

The Proof

Given: a triangulation of a square into n equal-area triangles.

Color a vertex at (x, y) with

$$
\begin{aligned}
& \text { A if }|x|_{2}<1 \text { and }|y|_{2}<1 . \\
& \text { B if }|x|_{2} \geq 1 \text { and }|x|_{2} \geq|y|_{2} . \\
& \text { C if }|y|_{2} \geq 1 \text { and }|x|_{2}<|y|_{2} .
\end{aligned}
$$

We want to prove that n is even.

Use Sperner's Lemma

A: $|x|_{2}<1$ and $|y|_{2}<1$.
B: $|x|_{2} \geq 1$ and $|x|_{2} \geq|y|_{2}$.
C: $|y|_{2} \geq 1$ and $|x|_{2}<|y|_{2}$.

Use Sperner's Lemma

A: $|x|_{2}<1$ and $|y|_{2}<1$.
B: $|x|_{2} \geq 1$ and $|x|_{2} \geq|y|_{2}$.
C: $|y|_{2} \geq 1$ and $|x|_{2}<|y|_{2}$.

Use Sperner's Lemma

A: $|x|_{2}<1$ and $|y|_{2}<1$.
B: $|x|_{2} \geq 1$ and $|x|_{2} \geq|y|_{2}$.
C: $|y|_{2} \geq 1$ and $|x|_{2}<|y|_{2}$.

$$
(1,0)
$$

Use Sperner's Lemma

$(0,1)$
A: $|x|_{2}<1$ and $|y|_{2}<1$.
B: $|x|_{2} \geq 1$ and $|x|_{2} \geq|y|_{2}$.
C: $|y|_{2} \geq 1$ and $|x|_{2}<|y|_{2}$.

Use Sperner's Lemma

A: $|x|_{2}<1$ and $|y|_{2}<1$.
B: $|x|_{2} \geq 1$ and $|x|_{2} \geq|y|_{2}$.
C: $|y|_{2} \geq 1$ and $|x|_{2}<|y|_{2}$.

Use Sperner's Lemma

A: $|x|_{2}<1$ and $|y|_{2}<1$.
B: $|x|_{2} \geq 1$ and $|x|_{2} \geq|y|_{2}$.
C: $|y|_{2} \geq 1$ and $|x|_{2}<|y|_{2}$.

Bottom: A or B

Use Sperner's Lemma

A: $|x|_{2}<1$ and $|y|_{2}<1$.
B: $|x|_{2} \geq 1$ and $|x|_{2} \geq|y|_{2}$.
C: $|y|_{2} \geq 1$ and $|x|_{2}<|y|_{2}$.

Bottom: A or B
Left: A or C

Use Sperner's Lemma

A: $|x|_{2}<1$ and $|y|_{2}<1$.
B: $|x|_{2} \geq 1$ and $|x|_{2} \geq|y|_{2}$.
C: $|y|_{2} \geq 1$ and $|x|_{2}<|y|_{2}$.

Bottom: A or B
Left: A or C
Right: B or C

Use Sperner's Lemma

> A: $|x|_{2}<1$ and $|y|_{2}<1$.
> B: $|x|_{2} \geq 1$ and $|x|_{2} \geq|y|_{2}$.
> C: $|y|_{2} \geq 1$ and $|x|_{2}<|y|_{2}$.

Bottom: A or B
Left: A or C
Right: B or C
Top: B or C

Use Sperner's Lemma

> A: $|x|_{2}<1$ and $|y|_{2}<1$.
> B: $|x|_{2} \geq 1$ and $|x|_{2} \geq|y|_{2}$.
> C: $|y|_{2} \geq 1$ and $|x|_{2}<|y|_{2}$.

Bottom: A or B Odd number of
Left: $\quad \mathrm{A}$ or $\mathrm{C} \Rightarrow \mathrm{AB}$ edges on
Right: $\quad \mathrm{B}$ or C^{\Rightarrow} perimeter
Top: B or C

Use Sperner's Lemma

> A: $|x|_{2}<1$ and $|y|_{2}<1$.
> B: $|x|_{2} \geq 1$ and $|x|_{2} \geq|y|_{2}$.
> C: $|y|_{2} \geq 1$ and $|x|_{2}<|y|_{2}$.

Bottom: A or B Odd number of
Left: $\quad \mathrm{A}$ or $\mathrm{C} \Rightarrow \mathrm{AB}$ edges on
Right: B or $\mathrm{C}{ }^{\Rightarrow}$ perimeter; get
Top: B or C ABC triangle

What we know so far

In any triangulation of the square into n
triangles, there is an $A B C$ triangle.

What we know so far

In any triangulation of the square into n equal-area triangles, there is an $A B C$ triangle.

What we know so far

In any triangulation of the square into n equal-area triangles, there is an $A B C$ triangle.
Area of $A B C$ triangle is $\frac{1}{n}$.

What we know so far

In any triangulation of the square into n equal-area triangles, there is an $A B C$ triangle.
Area of $A B C$ triangle is $\frac{1}{n}$.
Key idea: the area of a triangle is related to the color of its vertices.

What we know so far

In any triangulation of the square into n equal-area triangles, there is an $A B C$ triangle.
Area of $A B C$ triangle is $\frac{1}{n}$.
Key idea: the area of a triangle is related to the color of its vertices.

In fact, if r is the area of an $A B C$ triangle, then $|r|_{2} \geq 2$.

What we know so far

In any triangulation of the square into n equal-area triangles, there is an $A B C$ triangle.
Area of $A B C$ triangle is $\frac{1}{n}$.
Key idea: the area of a triangle is related to the color of its vertices.
In fact, if r is the area of an ABC triangle, then $|r|_{2} \geq 2$. So $|1 / n|_{2} \geq 2$.

What we know so far

In any triangulation of the square into n equal-area triangles, there is an $A B C$ triangle.
Area of $A B C$ triangle is $\frac{1}{n}$.
Key idea: the area of a triangle is related to the color of its vertices.
In fact, if r is the area of an ABC triangle, then $|r|_{2} \geq 2$. So $|1 / n|_{2} \geq 2$. So n is even.

Area and vertex color

$r=$ area of ABC triangle with vertices (0,0) colored A
$\left(x_{b}, y_{b}\right)$ colored B so $\left|x_{b}\right|_{2} \geq 1$ and
$\left|x_{b}\right|_{2} \geq\left|y_{b}\right|_{2}$
(x_{c}, y_{c}) colored C so $\left|y_{c}\right|_{2} \geq 1$ and $\left|y_{c}\right|_{2}>\left|x_{c}\right|_{2}$

Area and vertex color

$r=$ area of $A B C$ triangle with vertices (0,0) colored A
$\left(x_{b}, y_{b}\right)$ colored B so $\left|x_{b}\right|_{2} \geq 1$ and
$\left|x_{b}\right|_{2} \geq\left|y_{b}\right|_{2}$
(x_{c}, y_{c}) colored C so $\left|y_{c}\right|_{2} \geq 1$ and $\left|y_{c}\right|_{2}>\left|x_{c}\right|_{2}$
$r=\frac{1}{2} \cdot\left(x_{b} y_{c}-x_{c} y_{b}\right)$

Area and vertex color

$r=$ area of ABC triangle with vertices (0,0) colored A
$\left(x_{b}, y_{b}\right)$ colored B so $\left|x_{b}\right|_{2} \geq 1$ and
$\left|x_{b}\right|_{2} \geq\left|y_{b}\right|_{2}$
(x_{c}, y_{c}) colored C so $\left|y_{c}\right|_{2} \geq 1$ and $\left|y_{c}\right|_{2}>\left|x_{c}\right|_{2}$

$$
|r|_{2}=\left|\frac{1}{2}\right|_{2} \cdot\left|x_{b} y_{c}-x_{c} y_{b}\right|_{2}
$$

Area and vertex color

$r=$ area of $A B C$ triangle with vertices $(0,0)$ colored \mathbf{A}
$\left(x_{b}, y_{b}\right)$ colored B so $\left|x_{b}\right|_{2} \geq 1$ and
$\left|x_{b}\right|_{2} \geq\left|y_{b}\right|_{2}$
$\left(x_{c}, y_{c}\right)$ colored C so $\left|y_{c}\right|_{2} \geq 1$ and $\left|y_{c}\right|_{2}>\left|x_{c}\right|_{2}$
$|r|_{2}=2 \cdot\left|x_{b} y_{c}-x_{c} y_{b}\right|_{2}$

Area and vertex color

$r=$ area of $A B C$ triangle with vertices (0,0) colored A
$\left(x_{b}, y_{b}\right)$ colored B so $\left|x_{b}\right|_{2} \geq 1$ and
$\left|x_{b}\right|_{2} \geq\left|y_{b}\right|_{2}$
(x_{c}, y_{c}) colored C so $\left|y_{c}\right|_{2} \geq 1$ and $\left|y_{c}\right|_{2}>\left|x_{c}\right|_{2}$

$$
|r|_{2}=2 \cdot\left|x_{b} y_{c}-x_{c} y_{b}\right|_{2}
$$

$$
=2 \cdot \max \left\{\left|x_{b} y_{c}\right|_{2},\left|x_{c} y_{b}\right|_{2}\right\}
$$

Area and vertex color

$r=$ area of ABC triangle with vertices (0,0) colored A
$\left(x_{b}, y_{b}\right)$ colored B so $\left|x_{b}\right|_{2} \geq 1$ and
$\left|x_{b}\right|_{2} \geq\left|y_{b}\right|_{2}$
(x_{c}, y_{c}) colored C so $\left|y_{c}\right|_{2} \geq 1$ and $\left|y_{c}\right|_{2}>\left|x_{c}\right|_{2}$

$$
|r|_{2}=2 \cdot\left|x_{b} y_{c}-x_{c} y_{b}\right|_{2}
$$

$$
=2 \cdot \max \left\{\left|x_{b} y_{c}\right|_{2},\left|x_{c} y_{b}\right|_{2}\right\}
$$

$$
=2 \cdot\left|x_{b} y_{c}\right|_{2}
$$

Area and vertex color

$r=$ area of ABC triangle with vertices (0,0) colored A
$\left(x_{b}, y_{b}\right)$ colored B so $\left|x_{b}\right|_{2} \geq 1$ and
$\left|x_{b}\right|_{2} \geq\left|y_{b}\right|_{2}$
(x_{c}, y_{c}) colored C so $\left|y_{c}\right|_{2} \geq 1$ and $\left|y_{c}\right|_{2}>\left|x_{c}\right|_{2}$

$$
|r|_{2}=2 \cdot\left|x_{b} y_{c}-x_{c} y_{b}\right|_{2}
$$

$$
=2 \cdot \max \left\{\left|x_{b} y_{c}\right|_{2},\left|x_{c} y_{b}\right|_{2}\right\}
$$

$$
=2 \cdot\left|x_{b}\right|_{2} \cdot\left|y_{c}\right|_{2}
$$

Area and vertex color

$r=$ area of ABC triangle with vertices (0,0) colored A
$\left(x_{b}, y_{b}\right)$ colored B so $\left|x_{b}\right|_{2} \geq 1$ and
$\left|x_{b}\right|_{2} \geq\left|y_{b}\right|_{2}$
(x_{c}, y_{c}) colored C so $\left|y_{c}\right|_{2} \geq 1$ and $\left|y_{c}\right|_{2}>\left|x_{c}\right|_{2}$

$$
|r|_{2}=2 \cdot\left|x_{b} y_{c}-x_{c} y_{b}\right|_{2}
$$

$$
=2 \cdot \max \left\{\left|x_{b} y_{c}\right|_{2},\left|x_{c} y_{b}\right|_{2}\right\}
$$

$$
=2 \cdot\left|x_{b}\right|_{2} \cdot\left|y_{c}\right|_{2} \geq 2
$$

Area and vertex color

Let r be the area of an ABC triangle, with vertices
(x_{a}
, y_{a}
) colored A
$\left(x_{b} \quad, y_{b}\right.$
) colored B
$\left(x_{c} \quad, y_{c}\right.$
) colored C

Area and vertex color

Let r be the area of an ABC triangle, with vertices translated by $\left(-x_{a},-y_{a}\right)$

$$
\begin{aligned}
& \left(x_{a}-x_{a}, y_{a}-y_{a}\right) \text { colored A? } \\
& \left(x_{b}-x_{a}, y_{b}-y_{a}\right) \text { colored B? } \\
& \left(x_{c}-x_{a}, y_{c}-y_{a}\right) \text { colored C? }
\end{aligned}
$$

Area and vertex color

Let r be the area of an ABC triangle, with vertices translated by $\left(-x_{a},-y_{a}\right)$

$$
\begin{aligned}
& \left(x_{a}-x_{a}, y_{a}-y_{a}\right) \text { colored } \mathrm{A} \\
& \left(x_{b}-x_{a}, y_{b}-y_{a}\right) \text { colored B } \\
& \left(x_{c}-x_{a}, y_{c}-y_{a}\right) \text { colored C }
\end{aligned}
$$

Translating by a point colored A preserves the colors.

Area and vertex color

Let r be the area of an ABC triangle, with vertices translated by $\left(-x_{a},-y_{a}\right)$

$$
\begin{aligned}
& \left(x_{a}-x_{a}, y_{a}-y_{a}\right) \text { colored } \mathrm{A} \\
& \left(x_{b}-x_{a}, y_{b}-y_{a}\right) \text { colored B } \\
& \left(x_{c}-x_{a}, y_{c}-y_{a}\right) \text { colored C }
\end{aligned}
$$

Translating by a point colored A preserves the colors.
The previous calculation proves $|r|_{2} \geq 2$.

Area and vertex color

Let n be the number of equal-area triangles, each having area $r=1 / n$.

Area and vertex color

Let n be the number of equal-area triangles, each having area $r=1 / n$.

Then $|n \cdot r|_{2}=|1|_{2}=1$.

Area and vertex color

Let n be the number of equal-area triangles, each having area $r=1 / n$.

Then $|n \cdot r|_{2}=|1|_{2}=1$.

But $|r|_{2} \geq 2$, so $|n|_{2} \leq 1 / 2$, so n is even.

Area and vertex color

Let n be the number of equal-area triangles, each having area $r=1 / n$.

Then $|n \cdot r|_{2}=|1|_{2}=1$.

But $|r|_{2} \geq 2$, so $|n|_{2} \leq 1 / 2$, so n is even. \square

Other polygons

n is in the spectrum of a polygon P
if P can be divided in n equal-area triangles.

Bibliography

Where can I learn more?

Bibliography

Where can I learn more?

- Paul Monsky. "On dividing a square into triangles." Amer. Math. Monthly 771970 161-164.

Bibliography

Where can I learn more?

- Paul Monsky. "On dividing a square into triangles." Amer. Math. Monthly 771970 161-164.
- Sherman Stein and Szabó Sándor. Algebra and tiling. Homomorphisms in the service of geometry. Carus Mathematical Monographs 25. MAA. 1994.

Thank You!

