

Pyramides magiques...

 \leadsto Étape 1

Prenez 3 bâtonnets, mettez une petite boule de pâte à modeler au bout de chacun, et assemblez-les pour constituer un TRIANGLE.

- 1. Quelle est la nature de ce triangle? Est-il isocèle, équilatéral, rectangle, quelconque?
- 2. Comment on appelle les points (en pâte à modeler) qui constituent les extrémités du triangle?
- 3. Placez le triangle ainsi obtenu sur une feuille de papier blanc. Ce triangle est-il en dimension 1, 2, ou 3?

Le triangle obtenu est une figure **plane**.

\rightsquigarrow Étape 2

Prenez 3 nouveaux bâtonnets. À nouveau, à chaque extrémité, mettez une boule de pâte à modeler, et assemblez les bâtonnets sur votre triangle pour obtenir une pyramide.

Vous obtenez donc un objet dont les faces sont des triangles.

- 4. Combien de faces/triangles comptez-vous?
- 5. Pouvez-vous calculer l'aire d'un de ces triangles?
- 6. Comment appelle-t-on cette pyramide en mathématiques?

<u>Indice</u>: le nom de cet objet vient du grec, essayez de le trouver avec le tableau de correspondances ci-dessous!

Français	Grec Préfixes grecs
trois	$ ext{tri} rac{(au ho\iota)}{}$
quatre	tetra $(\tau \varepsilon \tau \rho \alpha)$
cinq	$\mathbf{penta} (\pi \acute{\varepsilon} \nu \tau \varepsilon)$
six	$\mathbf{hexa} \; (\stackrel{\triangleleft}{\varepsilon} \xi)$
sept	hepta ($\stackrel{\scriptstyle extstyle /}{arepsilon}\pi aulpha$)
huit	octo ($\eth\kappa au\omega$)
dix	$\mathbf{deca} (\delta \acute{\varepsilon} \kappa \alpha)$
douze	dodeca $(\delta \omega \delta \varepsilon \kappa \alpha)$
plusieurs	$\mathbf{poly} (\pi o \lambda \acute{v})$
face	èdra ($\stackrel{\scriptscriptstyle \subset}{\varepsilon} \delta ho lpha$)

7. Regardez les objets sur la table. Sauriez-vous trouver leurs noms avec des noms en « èdre »?

\leadsto Étape 3

Faites 3 autres pyramides.

\rightsquigarrow Étape 4

Avec des boules de pâte à modeler, assemblez ces nouvelles pyramides avec la première de façon à obtenir une grande pyramide constituée de quatre petites pyramides.

- 8. Pouvez-vous comparer le volume de la grande pyramide avec celui d'une des petites?
- 9. En fin de compte, combien faut-il de bâtonnets et de boules de pâte à modeler pour fabriquer cette grande pyramide?

